# **POILICAST** PRESLOPED TRENCH DRAIN SYSTEMS







## INDUSTRIAL

- Dow Chemical
- Chrysler
- Coors
- Iowa Beef Products
- Dole Pineapple, Bud of California
- Phillips Petroleum, Drisco Pipe
- Southern Pacific Railroad
- Pfizer Chemical
- Oceanside Water Treatment Plant, San Francisco
- Boeing
- Long Island Railroad
- IBM
- Ford Motors
- Georgia Pacific
- Monsanto

## COMMERCIAL

- Keystone Foods
- U.S. Post Office (general mail facilities)
- Midas Muffler
- Pep Boys
- Sears
- Beringer Winery
- Steven-Swan Humane Society
- Pennsylvania Turnpike
- Forty-Niner Training Camp
- Orlando Magic
- Albertson's Supermarkets
- Wal-mart
- Fulton Fish Market
- Federal Express

## CONTENTS

## POLYCAST<sup>®</sup>



Airport



**City Street** 



Distillery



Car Wash

| ntroduction                          | 4  |
|--------------------------------------|----|
| Drain Systems                        | 5  |
| Drain Configuration                  | 8  |
| Performance Graphs                   | 9  |
| 600 Series Channel Data              | 10 |
| DURAGUARD <sup>®</sup>               | 11 |
| 700 Series Assembly                  | 12 |
| Channel Installation Alignment Chair | 13 |
| Drain System Enhancements            | 14 |
| Accessories                          | 15 |
| Catch Basins                         | 16 |
| SPORT-TRAC - 400 & 600 Series        | 18 |
| POLYCAST® 3000 Series                | 19 |
| Grate In-flow Charts                 | 22 |
| Gratings                             | 23 |
| Corrosion Resistance Guide           | 30 |
| Specifications                       | 33 |
| Application Load Classifications     |    |

### **INTRODUCTION**



The POLYCAST® Presloped Drain Systems are designed for a variety of applications, both indoors and outdoors. POLYCAST® is made of a high strength, chemical resistant, composite material. As a result, POLYCAST® drains offer a high degree of chemical resistance and have a water absorption value of less than one percent (ASTM C140).

Rapid drainage, durability and resistance to freeze/thaw cycles (ASTM C666) make POLYCAST<sup>®</sup> ideal for outdoor applications. POLYCAST<sup>®</sup> is more than four times stronger than ordinary Portland Cement Concrete. The 24" and 48" components make POLYCAST<sup>®</sup> extremely versatile. With the proper components, a flow rate of 900 GPM per outlet is attainable.

The POLYCAST<sup>®</sup> 3000 Series high capacity drain system (a pultruded FRP drain), can achieve flow rates of more than 3000 GPM for 120' of drain.

Combining simplified installation, high durability and lower overall cost, POLYCAST<sup>®</sup> systems are proven superior in surface drainage.

### **Applications**

INDUSTRIAL

- Manufacturing
- Chemical Plants
- Bottling
- Food Processing (USDA Approved)

COMMERCIAL

- Vehicle Maintenance
- Airports
- Highway and Roads/Curbs
- Schools



ABOVE — Smooth interior finish of drain assures complete drainage

### **DRAIN SYSTEMS**

### **POLYCAST**<sup>®</sup>

### 400 Series Residential & Sport System

The POLYCAST<sup>®</sup> 400 Series is a complete surface drainage system with

I.D. Depth: 4.5" I.D. Width: 4.25"

1111100

a precast polyester polymer concrete trench and a tight-fitting galvanized steel grate. The steel grate is bicycle and wheelchair resistant and will support automobile traffic. The precast trench and grate is available in 2' and 4' lengths. Every 4' section has a 4" bottom cut-out for a pipe connection. Solid and drain end caps are available for 3" PVC pipe. Inexpensive and long lasting, POLYCAST® 400 Series is the perfect drainage system for tennis courts, swimming pools, walkways, patios, garage entrances, etc. Use with Installation Chair DA0634. Grating hold-down device DA0642 is recommended.

600 Series Presloped Heavy Duty/Light Duty

The POLYCAST<sup>®</sup> 600 Series Presloped System is ideally suited for a variety of commercial and industrial applications. It is designed

to have **flow rates equal to or greater than, most larger poured-in-place trench drains**. With the proper components, flow rates of 470 GPM per outlet are attainable. The precast trench sections and grates are made up of 2' and 4' lengths. Certain 4' channels and all half channels have 4" bottom cut-outs for pipe connections. POLYCAST® 600 Series is available in either polyester or Vinyl Ester polymer concrete. The polyester polymer concrete is used for most drainage applications. Vinyl ester polymer concrete is used for high corrosive and high temperature applications. *The 600 Series Drains are designed for pneumatic tire traffic only.* 

### 500 Series Deck Drain

The POLYCAST® 500 Series Deck

I.D. Depth: 1.75"

Drain System is ideally suited for a variety of above grade applications requiring drainage of incidental water run-off. The 500 Series is Strongwell's shallowest drain, measuring: 0.D. 48" x 6.25" x 2.5" and I.D. of 48" x 4.25" x 1.75". It is designed to be installed in suspended slab applications such as parking structures, pool deck areas and many other thin slab applications. The precast sections are made up of 4' lengths. Each section has a 4" bottom cut-out for pipe connections. Gratings available for this system are the slotted galvanized and stainless steel grates, part numbers DG0640 and DG0647, and fiberglass grates, part number DG0644. POLYCAST<sup>®</sup> 500 Series is available in either polyester or Vinyl Ester polymer concrete. The polyester polymer concrete would be used for most drainage applications. Vinyl ester polymer concrete is used for high corrosive and high temperature applications. The 500 Series drains are designed for pneumatic tire traffic only. For added depth and/or solid tire forklift (full traffic) applications, the 700 Series (HARDNOSE) frame can be added. Grating hold-down device DA0542 is recommended.

### 700 Series HARDNOSE Presloped Extra Heavy Duty

The POLYCAST® 700 Series Channels are designed for heavy commercial and military

aircraft traffic, hard wheel forklifts,

pallet jacks, solid wheel carts, construction equipment and off-road vehicles at moderate speeds (exceeds FAA Airport Pavement Design loads per AC 150/5320-6D). The flow rates are comparable to the conventional 600 Series. The 700 Series assembly consists of cast iron frames inlaid on the top of the conventional 600 Series polymer concrete Channel and fitted with either Cast Iron (DG0641) or Ductile Iron (DG0641D) slotted grates. Optional anchoring bolts are available.

#### All Sizes and Styles of POLYCAST® Trench Drains are Available in Polyester or Vinyl Ester

**NOTE:** Prolonged exposure to ambient, service or surface temperatures of 120° F or greater requires the use of Vinyl Ester channels.

5

#### **DRAIN SYSTEMS**

### 800 Series MAXI Heavy Duty



The POLYCAST® 800 Series Channel is designed for those high volume situations that exceed the capacity of the

POLYCAST® 600 Series. The channel, with a width of 12", is approximately double the width of the standard 600 Series channels. The 825 Section is a neutral channel with interlocking tongue-and-groove joints. The 825 channel is designed for areas of high volume cross-flow interception. or areas where the larger cross-section is necessary. Channels can also be used as a corrosion resistant, secondary containment system. The 825 channel is available in either polyester or Vinyl Ester polymer concrete. The polyester polymer concrete is used for most drainage applications; the Vinyl Ester polymer concrete should be used for highly corrosive situations or higher temperature applications. All POLYCAST® 800 Series gratings, except the fiberglass grating, are 2' long with two gratings required for the 4' channel. The fiberglass grate is 4' in length. The iron gratings and covers for the 825 channel come with locking bolts. The bolts fit threaded inserts in the channel bearing ledges. The bolts are recessed to fit below the grating surface. Three different end caps are available for the 825 channel. The closed end cap is designed to fit either end of the channel. Drain end caps fit the downstream end and can be ordered with a 6" or 8" pipe stub. The flow rate of the 825 channel varies with the slope of the installation. The 825 channel is not presloped and any slope required should be designed into the slab.



### DURAGUARD<sup>®</sup> Channel Frame System

The POLYCAST® DURAGUARD® Series is an innovative design that improves heavy load impact performance. Utilizing a high density polvethylene composite, the

DURAGUARD<sup>®</sup> channel frame reinforces the channel edge to dramatically improve the load performance and impact resistance of the standard 600 Series polymer concrete channel. In addition, DURAGUARD<sup>®</sup> is extremely resistant to environmental exposure and many corrosive chemicals. The anchoring flanges on the outer edge of the DURAGUARD<sup>®</sup> frame <u>permanently and mechanically</u> engage the frame into the concrete. Less expensive than the POLYCAST<sup>®</sup> Series 700, DURAGUARD<sup>®</sup> is ideal for many markets including transportation, utilities, agriculture, food processing, public/ government housing, industry, manufacturing, recreational and chemical plants.

#### All Sizes and Styles of POLYCAST® Trench Drains are Available in Polyester or Vinyl Ester

NOTE: Prolonged exposure to ambient, service or surface temperatures of 120° F or greater requires the use of Vinyl Ester channels.

### **DRAIN SYSTEMS**

### POLYCAST®

### 3000 Series High Capacity Drain

POLYCAST<sup>®</sup> 3000 is a high capacity presloped drain system designed for airports, roadways and other applications needing high volume flow rates. The unique bulb shaped design, combined with the continuous 1% slope, provides the largest flow capacity of any similar presloped trench drain on the market today. The flow rates for POLYCAST<sup>®</sup> 3000 are more than 3000 GPM (gallons per minute) or 6.73 cfs (cubic feet per second) for 120' of drain. Competitive drain systems often require extender panels for comparable flowrates.

The system channels are manufactured using the pultrusion process to produce a lightweight, high strength fiber reinforced polymer composite channel. The polymer material limits water absorption to less than 1% and provides excellent chemical resistance. The pultruded fiberglass construction provides extremely strong vertical sidewalls. This reduces sidewall deflection during the concrete pour and maintains maximum flow capacity. The sidewalls of many other drain systems tend to collapse during this critical process, resulting in substantially reduced flows. The coefficient of thermal expansion for POLYCAST® 3000 ( $4.5 \times 10^{-6}$  in/in/°F) is similar to that of concrete ( $6 \times 10^{-6}$  in/in/°F) so it will not buckle or break apart from thermal expansion stresses. This ensures that the structural integrity of the channel side walls and the flow rates remain constant. These basic design considerations reduce the need for special parts inventory and expensive accessories.

- Flow 6.73 cfs, 3014 GPM
- 100% concrete encasement of grate frames
- Grate frames will not trap air
- Sturdy sidewalls resist deflection
- UV stable
- 56% glass content by weight in channels
- CTE 4.5 x 10<sup>-6</sup> in/in/°F
- 120' continuous slope at 1%
- Manufactured in ISO-9001 plant
- No formwork
- 100' per hour installation rates possible
- Single lift concrete placement









### **DRAIN CONFIGURATION**





#### **USE OF NEUTRAL CHANNELS FOR LONG RUNS**



\*Number of non-sloped channels grouped together.

#### **EXTENDER PANELS**

| 624      | 625 | 660 | 660 | 660 | 660 | 660 | 660 | 660 |  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|--|
| <u> </u> |     | 601 | 602 | 603 | 604 | 605 | 606 | 607 |  |
| •        |     |     |     |     |     |     |     |     |  |



1

### PERFORMANCE GRAPHS FOR 600, 700 AND 900 SERIES



**FLOW CAPACITY** 

DEPTH OF FLOW (inches)







POLYCAST<sup>®</sup>



NOTE 1: All half and neutral channels have bottom cut outs. NOTE 2: All half and neutral channels accept the corresponding end caps.

|   | Channel Number       | Weight | Inlet   | Outlet  |  |
|---|----------------------|--------|---------|---------|--|
|   |                      | LDS.   | DIVI A  |         |  |
|   | 600N (nonsloped)     | 37     | 4-1/16  | 4-1/16  |  |
|   | 601                  | 38     | 4-1/16  | 4-3/8   |  |
|   | 602                  | 43     | 4-3/8   | 4-11/16 |  |
|   | 603                  | 43     | 4-11/16 | 5       |  |
|   | 604                  | 44     | 5       | 5-5/16  |  |
| ī | 605                  | 45     | 5-5/16  | 5-5/8   |  |
|   | 605N (nonsloped)     | 46     | 5-5/8   | 5-5/8   |  |
|   | 605H (nonsloped 24") | 22     | 5-5/8   | 5-5/8   |  |
|   | 606                  | 47     | 5-5/8   | 5-15/16 |  |
|   | 607                  | 50     | 5-15/16 | 6-1/4   |  |
|   | 608                  | 51     | 6-1/4   | 6-9/16  |  |
| 1 | 609                  | 52     | 6-9/16  | 6-7/8   |  |
|   | 610                  | 54     | 6-7/8   | 7-3/16  |  |
|   | 611                  | 55     | 7-3/16  | 7-1/2   |  |
|   | 612                  | 56     | 7-1/2   | 7-13/16 |  |
| Ĩ | 613                  | 57     | 7-13/16 | 8-1/8   |  |

| liet         |
|--------------|
| <u>1 'B'</u> |
| 7/16         |
| 3/4          |
| 3/4          |
| 3/4          |
| 1/16         |
| 3/8          |
| 1/16         |
|              |
| -5/16        |
| -5/8         |
| -15/16       |
| -1/4         |
| -9/16        |
| -7/8         |
| -7/8         |
| -7/8         |
|              |



700 Series HARDNOSE and DURAGUARD  $^{\otimes}$  frames add 1-3/16" to dimensions A or B.

Extender Panels add 7-13/16" to dimensions A or B.



Bottom of Channel Cut-Out

### **DURAGUARD® CHANNEL FRAME ASSEMBLY**

### **POLYCAST**<sup>®</sup>



#### Solid Tires

- High Speed (over 15 mph)
- Frequent Traffic

The POLYCAST<sup>®</sup> DURAGUARD<sup>®</sup> Channel Frame is extremely chemical resistant and greatly improves the impact and wear resistance of the standard 600 Series channels. When combined with the rugged slotted ductile iron grating Part No. DG0641D, you get a drainage system with superior chemical resistance. The system is suitable for lightly loaded forklifts and highway vehicles at low to moderate speeds (i.e. parking areas, driveways, warehouses). Exceeds FAA Airport Pavement Design Loads per AC 150/5320-6D.

The flow rates are comparable to the conventional 600 Series. Grating hold-down devices are available and must be used. Gratings must be in place and grate holddown devices installed and secure prior to concrete placement. Locking devices should be maintained secure during service.



Outperforms Stainless Steel









For heavy traffic applications, the DURAGUARD® frame and Part No. DG0641 gray iron slotted grating provide an economical means to improve impact resistance and durability (described in more detail on page 27). Uses grate hold-down device Part No. DA0642BH.



The DURAGUARD<sup>®</sup> frame and Part No. DG0641D grating offer superior chemical resistance and high strength for general to moderately heavy use applications (described in more detail on page 27). Uses grate hold-down device Part No. DA0642BH.

### **700 SERIES ASSEMBLY**



- High Speed (over 15mph)
- Frequent Traffic

The POLYCAST<sup>®</sup> 700 Series offers exceptional impact resistance. Designed for extreme loads, the HARDNOSE cast iron frame strengthens the grating and drain assembly for extra durability. The POLYCAST<sup>®</sup> 700 Series is recommended for heavy commercial and military aircraft taxi-ways at moderate speeds, hard wheel forklift, pallet jacks, solid wheel carts, construction equipment and off-road vehicles. It meets FAA Airport pavement design loads per AC 150/5320-6D.

The flow rates are comparable to the conventional 600 Series. Grating holddown devices are available and must be maintained secure to reduce grate movement during loading.





The 700 Series assembly consists of HARDNOSE cast iron frames inlaid on the top of the conventional 600 Series polymer concrete Channel and fitted with either Gray Iron or Ductile Iron Slotted Grates (described in more detail on page 27). Uses grate hold-down device Part. No. DA0642BH.



#### Installation Rates of 60'- 90' Per Hour Are Easily Attainable With a 2-Person Crew.



NOTE: For use with 400, 500, 600, 700 and 900 Series Channels.

The POLYCAST<sup>®</sup> Installation Chair is the most efficient and economical means of setting a precast trench system. The installation chair supports the ends of the channels, aligns and locks the joint rigidly together and prevents the channels from floating. Adjusting channel elevation is easy with the POLYCAST<sup>®</sup> Installation Chair.

The installation chair is attached by tightening the alignment bolts into the channel "dimples". Two pieces of rebar are set every 4' to correspond with the channel joints, placed through the connecting clamp on the installation chair and driven into the sub-base. The channels are then aligned and adjusted to achieve the proper elevation.

One chair per joint required.



#### **DRAIN SYSTEM ENHANCEMENTS**

Traffic Conditions Requiring Channel Reinforcement (700 Series Frames, DURAGUARD®, POLYGUARD)

- Solid Tires
- High Speed (over 15mph)
- Frequent Traffic

#### POLYGUARD

POLYCAST<sup>®</sup> POLYGUARD protects the exposed upper edge of the POLYCAST<sup>®</sup> channels for unmatched strength and protection against chipping and scarring in frequent or heavy traffic. POLYGUARD also gives extra architectural versatility.

POLYGUARD easily installs over the top edge of the 600 Series POLYCAST<sup>®</sup> channel and covers the upper horizontal and vertical surfaces of the POLYCAST<sup>®</sup> channel. It comes in 48" and 24" lengths.

POLYGUARD's keying feature locks into the adjacent concrete to help disperse destructive lateral loads away from the drain channel. This same feature also prevents the rails from slipping as can occur in other systems that rely only on mechanically bonding directly to the channel.



### **Neutral Channels**



#### **Extender Panel**

The Extender Panel Set (660) provides additional design flexibility in meeting requirements of extended run lengths and/or higher flow capacities.

The Extender Panel adds an additional depth of 7-13/16". All 600, 700 and 900 frame and grate systems are available. Extender Panels are available in 48" lengths.

660



### **ACCESSORIES**

### **POLYCAST**<sup>®</sup>



Locking Devices are to be used with all grating systems where wheel traffic occurs. This is necessary to provide system integrity.



Male and Female Transition Devices (699F & 699M) are available where channel runs are in opposite directions and two channels are set either female to female or male to male. A female transition piece (699F) is used to fill the top space of the female to female joint (this applies to 600 Series only). An epoxy grout or urethane sealer can be used to smooth over the gap on the inside bottom of the channel. A male transition piece (699M) is used to lap under the male to male joint.



**END CAPS** 

POLYCAST<sup>®</sup> end caps are used to enclose or provide piping transitions to the female and male ends of the channels where catch basins are not being used. They fit all channels ending in five (5), zero (0), neutrals (N) and halves (H).



### **CATCH BASINS**



The POLYCAST<sup>®</sup> Catch Basins are an important part of the versatile POLYCAST<sup>®</sup> Presloped Drain System. The Catch Basins are manufactured with the same high strength, corrosion resistant polyester and Vinyl Ester polymer concrete used for the POLYCAST<sup>®</sup> Drain Channels. The Catch Basins are designed to be used as collection points, drain run transitions and interceptors to collect solid debris. POLYCAST<sup>®</sup> Catch Basins are designed to accommodate all drain channel sizes and have cut-outs designed specifically for channels with catalog numbers ending in 5, 0, N and H. POLYCAST<sup>®</sup> Catch Basins have a selection of grates available for specific needs.

The POLYCAST<sup>®</sup> Catch Basins can be used with the POLYCAST<sup>®</sup> Drain System or can be used as an individual catch basin. In either case, costly labor-intensive on-site forming is eliminated.

POLYCAST<sup>®</sup> 700 Series HARDNOSE Catch Basins are also available. They have the same features as the corresponding 600 Series Catch Basin. The 700 Series Catch Basins have a one-piece metal assembly for additional grating load distribution. HARDNOSE Catch Basins should be used in areas where solid tire and heavy commercial vehicles are anticipated.

The 650 Catch Basin is available with any of the gratings/covers available for the 600 Series Channels (shown in detail on pages 23-26). The 651 Catch Basin is available with cast iron or fiberglass grates (shown in detail on page 29). The 6530B and 653SB Catch Basins are available with cast iron or fiberglass grates (shown in detail on page 29).



### **CATCH BASINS**









#### 4" and 6" Bottom Cut-Outs

Catch Basin cut-outs accept the following channels: *605, 610, 615, 620, 625 and their corresponding halves and neutrals.* 

Drain channel cut-out connections are located on both ends of the catch basin. Pipe discharge cut-outs for 4", 6", 8", 10" and 12" pipe are located on both sides. The pipe cut-outs are located near the bottom of the catch basin on one side and on the other side the pipe cut-outs are located toward the middle. The catch basins also have one 4" pipe cut-out on each end and one 4" and 6" pipe cut-out on the bottom.

#### **Debris Baskets**

Corrugated plastic debris baskets are available for the 650/750 and 651/751 catch basins. A galvanized steel debris basket is also available for the 650/750 catch basin (not shown).

HDPE Corrugated Plastic Debris Basket for 650/750 Catch Basin

Part No. DA0650TA



HDPE Corrugated Plastic Debris Basket for 651/751 Catch Basin

Part No. DA0651TA



NOTE: A debris basket is not available for the 653 catch basins.

### SPORT-TRAC - 400 & 600 Series

#### For artificial turf and running track installations.

- Easy to Install
- Maintenance-Free
- Durable
- Economical



ABOVE: (600 Series only) Specially designed grate anchors astro-turf to drain and maintains a level surface.



#### POLYCAST<sup>®</sup> 400 & 600 Series SPORT-TRAC Drains

POLYCAST<sup>®</sup> SPORT-TRAC drains are designed for running track and artificial turf playing field applications. SPORT-TRAC drains offer all of the physical and chemical resistance features of the standard POLYCAST<sup>®</sup> 400 and 600 Series drain systems. The SPORT-TRAC 600 Series grating clamps the artificial turf in place.

Both the 400 Series and the 600 Series SPORT-TRAC systems provide efficient drainage while maximizing life cycle costs because of their exceptional durability. Their strong polymer concrete construction and smooth interior surface walls make the systems virtually maintenance-free. The ease of installation and the modular design of the SPORT-TRAC drain systems also reduce construction costs, making them an economical solution for track and field applications.



600 Series



#### **HIGH CAPACITY DRAIN SYSTEM**

- More Than 3000 GPM Flow Rate
- 8-foot Channel Sections
- Lightweight
- Corrosion Resistant
- Rapid Installation
- Utilizes Standard Grating
- Single Lift Concrete Placement

The POLYCAST<sup>®</sup> 3000 Series is a high capacity drain system designed for airports, roadways and other applications needing high volume flow rates. The flow rates for POLYCAST<sup>®</sup> 3000 are more than **3000 GPM (gallons per minute) or 6.73 cfs (cubic feet per second)** for 120' of drain. The channels are pultruded fiberglass and are available in either a polyester or a Vinyl Ester resin system. The polymer material limits water absorption to less than 1% and provides excellent chemical resistance. The **strong vertical sidewalls** reduce sidewall deflection during the concrete pour and therefore maintain maximum flow capacity. The sidewalls of many other drain systems tend to collapse during this critical process, resulting in substantially reduced flows.

The POLYCAST<sup>®</sup> 3000 Series is designed for a distributed proof load in excess of 40,000 lbs. as outlined in federal specification A-A-60005 and AASHTO M306. These standards require the proof load to be held for 60 seconds. Destructive testing of gray iron grates has shown the POLYCAST<sup>®</sup> 3000 Series grates to have an ultimate capacity of 57,500 lbs. For comparison purposes, the 57,500 lb. test load is distributed over an area that results in a pressure of 710 psi.

According to FAA publication AC150/5320, inlet grates for spans of less than 24" (POLYCAST® Part No. DG3041 spans 8") that are subject to direct heavy aircraft loads should be designed for a uniform live load of 250 psi. Among large and midsize airliners and the Concorde, the Boeing 747 has the highest tire-to-pavement bearing pressure . The pressure on the pavement at Maximum Takeoff Weight for this aircraft is 207 psi.

POLYCAST<sup>®</sup> 3000 Series exceeds FAA airport pavement design loads per AC 150/5320-6D and exceeds heavy duty dynamic wheel load for AASHTO-H029. All grates and frames resist pullout forces in excess of 10kN per meter (685 lbs. per foot) of length in grated line drains.

#### **POLYCAST® 3000 System Accessories**

The channel frame, an integral required part of the drain system, is available in either plated steel or stainless steel.

Channel couplers and end cap adapters are ABS plastic. The specially designed end cap adapter can be used to close off the system or the diaphragm can be cut out to allow connections to standard 8" PVC pipe.

A selection of three gratings (shown in detail on page 27) are provided for various traffic, weight load or chemical resistance requirements. See page 20 for gratings and flow-through graph.



Bottom Outlet Adapter



\* Installation Instructions (if applicable) - Place bottom outlet adapter in desired location and mark channel for pipe cutout. For best results, cut channel with jig saw. Attach bottom outlet adapter with two sheet rock screws.

### **3000 Series Grating**



GPM

20

### **3000 SERIES CONFIGURATION**

**Drain Configuration** DA3042B DA3042B DA3000C Т DA3000A DA3000A DG3700AA ┸╌╂ HR. н H 3015 3014 3013 3012 3011 3010 3009 3008 3007 3006 3005 3004 3003 3002 3001 3015N 3013N 3011N 3009N 3007N 3005N 3003N 3001N 3014N 3012N 3010N 3008N 3006N 3004N 3002N Inlet Outlet Flow Part Inlet Outlet Flow Flow Part Flow Number Depth(in) Depth(in) (gpm) Velocity(fps) Wt.(lbs) Number Depth(in) Depth(in) (gpm) Velocity(fps) Wt.(lbs) 13.06 14.00 5.8 3001 1713 24.84 3009 20.75 21.69 2456 5.8 36.65 14.00 3002 15.00 1806 5.8 26.01 3010 21.69 22.69 2549 5.8 40.75 3003 15.00 15.94 1899 5.8 27.53 3011 22.69 23.63 2642 5.8 42.27 3004 15.94 16.88 1992 5.8 29.05 23.63 43.79 3012 24.56 2735 5.8 3005 16.88 17.81 2085 5.8 30.57 3013 24.56 25.56 45.31 2828 5.8 3006 17.81 18.81 2178 32.09 5.8 3014 25.56 26.50 2921 5.8 46.83 3007 18.81 19.75 2271 5.8 33.61 3015 26.50 27.50 3014 5.8 48.35



### 21

**POLYCAST**<sup>®</sup>

### **GRATE IN-FLOW CHARTS**



HEAD OF WATER ABOVE GRATE IN FEET

### **600 SERIES GRATINGS**





Application Load Class A (pg. 39)

#### **Galvanized Steel Perforated**

Designed for use in pedestrian areas to minimize heel hazard and prevent entrance of large objects. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

ADA Compliant

#### Part No. DG0646

Open Area: 8.5 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 4 lbs. or 8 lbs. For use with 500/600 Series Channels Perforation Diameter: 1/4" Grate In-Flow: See chart pg. 22



### Stainless Steel Perforated

Designed for use where sanitary conditions are essential, as well as the need for heelresistant gratings. Grating hold-down device Part No. DA0642S (not shown) should be used and maintained secure.

ADA Compliant

#### Part No. DG0657

Open Area: 8.5 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 4 lbs. or 8 lbs. For use with 500/600 Series Channels Perforation Diameter: 1/4" Grate In-Flow: See chart pg. 22



#### **Galvanized Steel Solid**

Designed for pipe runs, e.g., secondary containment or cable runs. Removable cover allows full access. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

ADA Compliant

#### Part No. DG0645

Dimensions: 5-1/4" x 24" or 48" Weight: 4 lbs. or 8 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22



#### **Stainless Steel Solid**

Designed for pipe runs, e.g., secondary containment or cable runs. Especially suited for areas exposed to mild acids or bases. Removable cover allows full access. Grating hold-down device Part No. DA0642S (not shown) should be used and maintained secure.

ADA Compliant

#### Part No. DG0667

Dimensions: 5-1/4" x 24" or 48" Weight: 4 lbs. or 8 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22





### **600 SERIES GRATINGS**



Application Load Class B (pg. 39)

#### **Stainless Steel Slotted**

Application for use where sanitary conditions are essential. Grating hold-down device Part No. DA0642S (not shown) should be used and maintained secure.

#### Part No. DG0647

Open Area: 10.2 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 4 lbs. or 8 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22



#### **Galvanized Steel Slotted**

An economical alternative, the galvanized grate is appropriate for many general use conditions. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

#### Part No. DG0640

Open Area: 10.2 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 4 lbs. or 8 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22



#### **DURAGUARD®** Slotted

A high density polyethylene slotted grate appropriate for corrosive applications or where sanitary conditions are necessary. Provides excellent chemical resistance and durability. Polyethylene construction helps protect bare feet. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

#### Part No. DG0670

Open Area: 11 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" Weight: 4 lbs. For use with 600 Series Channels Grate In-Flow: See chart pg. 22 NOTE: Part No. DG0670G available, color: gray



#### **DURAGUARD®** Transverse

A versatile and economical alternative high density polyethylene composite grate. When used in high velocity transverse sheet flow applications, the longitudinal slots create turbulence to improve entry of flow into the channel. Grating hold-down device Part No. DAO642 (not shown) should be used and maintained secure.

ADA Compliant

#### Part No. DG0675

Open Area: 12.6 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" Weight: 3.5 lbs. For use with 600 Series Channels Grate In-Flow: See chart pg. 22 NOTE: Part No. DG0675G available, color: gray





### **600 SERIES GRATINGS**





Application Load Class C (pg. 39)

#### Double Galvanized Steel Perforated

Designed for use in pedestrian areas to minimize heel hazard and prevent entrance of large objects. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

ADA Compliant

#### Double Stainless Steel Perforated

Designed for use where sanitary conditions are essential, as well as the need for heelresistant gratings. Grating hold-down device Part No. DA0642S (not shown) should be used and maintained secure.

ADA Compliant

#### Double Galvanized Steel Slotted

An economical alternative, the galvanized reinforced slotted grate is appropriate for many heavy use applications. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

**Double Stainless Steel Slotted** 

Designed for use where sanitary conditions

are essential. Grating hold-down device Part

No. DA0642S (not shown) should be used

#### **Part No. DG0657R** Open Area: 8.5 in<sup>2</sup>/Linear Foot

Part No. DG0646R

Weight: 7 lbs. or 14 lbs.

Perforation Diameter: 1/4"

Open Area: 8.5 in<sup>2</sup>/Linear Foot

Dimensions: 5-1/4" x 24" or 48"

For use with 600 Series Channels

Grate In-Flow: See chart pg. 22

Dimensions: 5-1/4" x 24" or 48" Weight: 6 lbs. or 12 lbs. For use with 600 Series Channels Perforation Diameter: 1/4" Grate In-Flow: See chart pg. 22

### Part No. DG0640R

Open Area: 10.2 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 6 lbs. or 12 lbs. For use with 600 Series Channels Grate In-Flow: See chart pg. 22

#### Part No. DG0647R

Open Area: 10.2 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 6 lbs. or 12 lbs. For use with 600 Series Channels Grate In-Flow: See chart pg. 22

#### Fiberglass

and maintained secure.

Designed for use with POLYCAST<sup>®</sup> Vinyl Ester trench in areas requiring extreme chemical resistance. The clear opening between the bars is 5/8". Grating hold-down device Part No. DA0642F (not shown) should be used and maintained secure.

#### Part No. DG0644

Open Area: 29.6 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 2-1/2 lbs. or 5 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22

#### Fiberglass

Designed for use with POLYCAST<sup>®</sup> Vinyl Ester trench in areas requiring extreme chemical resistance. The clear opening between the bars is 3/8". Grating hold-down device Part No. DA0642F (not shown) should be used and maintained secure.

#### Part No. DG0644SP

Open Area: 25.5 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" or 48" Weight: 3 lbs. or 6 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22















### **600 SERIES GRATINGS**



Application Load Class C (pg. 39)

#### **Double Stainless Steel Solid**

Designed for pipe runs, e.g., secondary containment or cable runs. Especially suited for areas exposed to mild acids or bases. Removable cover allows full access. Grating hold-down device Part No. DA0642S (not shown) should be used and maintained secure.

#### Part No. DG0667R

Dimensions: 5-1/4" x 24" or 48" Weight: 7 lbs. or 14 lbs. For use with 600 Series Channels Grate In-Flow: See chart pg. 22



#### Double Galvanized Steel Solid

Designed for pipe runs, e.g., secondary containment or cable runs. Removable cover allows full access. Grating hold-down device Part No. DA0642 (not shown) should be used and maintained secure.

#### Part No. DG0645R

Dimensions: 5-1/4" x 24" or 48" Weight: 7 lbs. or 14 lbs. For use with 600 Series Channels Grate In-Flow: See chart pg. 22



ADA Compliant



#### **Gray Iron Slotted**

The gray iron grate is appropriate for many general use conditions. Grating hold-down device Part No. DA0642B (not shown) should be used and maintained secure.

#### Part No. DG0641

Open Area: 19.8 in<sup>2</sup>/Linear Foot Dimensions: 5-1/4" x 24" Weight: 15 lbs. For use with 600/700 Series Channels Grate In-Flow: See chart pg. 22



#### **Gray Iron Solid**

ADA Compliant

Designed for pipe raceway, e.g., secondary containment and cable runs. Removable cover allows full access. Grating hold-down device Part No. DA0642B (not shown) should be used and maintained secure.

#### Part No. DG0641S

Dimensions: 5-1/4" x 24" Weight: 18 lbs. For use with 600 Series Channels Black Finish Grate In-Flow: See chart pg. 22





### **DURAGUARD® CHANNEL FRAME SYSTEM**

### **POLYCAST**<sup>®</sup>



#### DURAGUARD<sup>®</sup> Frame w/Gray Iron Slotted

DG0700PE Series Frame and Part No. DG0641 gray iron are designed for moderate heavy use conditions. Grating hold-down device Part No. DA0642BH (not shown) <u>must be used and</u> <u>maintained secure.</u> Improves strength and impact resistance.

#### Part No. DG0700PE w/ DG0641

Open Area: 19.8 in<sup>2</sup>/Linear Foot Dimensions: 6-1/4" x 24" Weight (grate plus frame): 16 lbs. For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22 **NOTE: Grates & locking devices must be in place and secure prior to concrete placement.** 



#### DURAGUARD<sup>®</sup> Frame w/ Ductile Iron Slotted

The DURAGUARD<sup>®</sup> Frame and Ductile Iron Slotted Grate, Part No. DGO641D, provide increased strength and durability for general to moderately heavy use applications. Offers exceptional corrosion resistance and low maintenance. Grating hold-down device Part No. DAO642BH (not shown) <u>must be used</u> and maintained secure.

#### Part No. DG0700PE w/ DG0641D

Open Area: 20.9 in<sup>2</sup>/Linear Foot Dimensions: 6-1/4" x 24" Weight (grate plus frame): 16 lbs. ASTM A536 Class 65-45-12 For use with 500/600 Series Channels Grate In-Flow: See chart pg. 22 **NOTE: Grates & locking devices must be in place and secure prior to concrete placement.** 



### **700 SERIES CHANNEL FRAME SYSTEM**



#### 700 Series HARDNOSE Gray Iron Frame w/Gray Iron Slotted

DG0700 Series Frame and Part No. DG0641 grates used in areas exposed to heavy traffic and solid tire vehicles. Grating hold-down device DA0642B must be maintained secure. Offers exceptional impact resistance.



#### 700 Series HARDNOSE Gray Iron Frame w/Ductile Iron Slotted

DG0700 Series Frame and Part No. DG0641D grates used in areas exposed to heavy traffic and solid tire vehicles. Grating hold-down device DA0642B must be maintained secure. Offers exceptional impact resistance.

#### Open Area: 19.8 in²/Linear Foot Dimensions: 6-1/4" x 24"

Part No. DG0700

w/DG0641

Weight (grate plus frame): 30 lbs. For use with 500/600 Series Channels Black Finish Grate In-Flow: See chart pg. 22



#### Part No. DG0700 w/DG0641D

Open Area: 19.8 in<sup>2</sup>/Linear Foot Dimensions: 6-1/4" x 24" Weight (grate plus frame): 30 lbs. ASTM A536 Class 65-45-12 For use with 500/600 Series Channels Black Finish Grate In-Flow: See chart pg. 22





### **800 SERIES GRATINGS**



#### **MAXI/Gray Iron Slotted**

Designed for general use. Grating holddown devices are included and should be maintained secure.

#### Part No. DG0841

Open Area: 32 in<sup>2</sup>/Linear Foot Dimensions: 10" x 24" Weight: 62 lbs. For use with 800 Series Channels Black Finish Grate In-Flow: See chart pg. 22

#### **MAXI/Gray Iron Solid**

Designed for pipe raceway, e.g., secondary containment and cable runs. Removable cover allows full access. Grating hold-down devices are included and should be maintained secure.

#### Part No. DG0842

Dimensions: 10" x 24" Weight: 75 lbs. For use with 800 Series Channels Grate In-Flow: See chart pg. 22



#### **MAXI/Fiberglass**

Designed for use with the POLYCAST® VinvI Ester trench in areas requiring extreme chemical resistance. Securing bolts are included and should be used and maintained secure.

#### Part No. DG0844

Open Area: 31 in<sup>2</sup>/Linear Foot Dimensions: 10" x 48" Weight: 15 lbs. For use with 800 Series Channels Grate In-Flow: See chart pg. 22



#### **3000 SERIES GRATINGS**



#### **Ductile Iron Slotted**

A heavy duty grate suitable for frequent traffic applications. Exceeds AASHTO H-20, FAA requirements for pavement design and exceeds Federal Specification RR-F-621E.

#### **Stainless Steel Bar**

Designed for meat processing plants and other areas requiring stainless steel gratings. Structural banded, 3/16" bar thickness.

#### Part No. DG3041

Open Area: 42 in<sup>2</sup>/Linear Foot Dimensions: 8" x 24" x 1.5" Weight: 36 lbs. ASTM A536 Class 65-45-12 Grate In-Flow: See chart pg. 20

#### Part No. DG3047R

Open Area: 80 in<sup>2</sup>/Linear Foot Dimensions: 8" x 24" x 1.5" Weight: 27 lbs. Grate In-Flow: See chart pg. 20









### **3000 SERIES GRATINGS**

**POLYCAST**<sup>®</sup>



extreme chemical resistance.

Designed for use with POLYCAST® 3000

Vinyl Ester channels in areas requiring

Fiberglass

#### Part No. DG3044

Open Area: 38 in<sup>2</sup>/Linear Foot Dimensions: 8" x 48" x 1.5" Weight: 12 lbs. Grate In-Flow: See chart pg. 20



### CATCH BASIN GRATINGS 651/751/6530B/653SB/7530B/753SB

| Airplane Semi                                                                                                                  |                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gray Iron Slotted                                                                                                              | Part No. DG0643                                                                                                                                                                                                    |
| Designed for frequent heavy traffic. Grating<br>hold-down devices are included and should<br>be maintained secure.             | Open Area: 32 in <sup>2</sup> /Linear Foot<br>Dimensions: 10-3/4" x 22-3/4"<br>Weight: 63 lbs.<br>For use with 651/652 Basins<br>Black Finish<br>Grate In-Flow: See Chart pg. 16                                   |
| Airplane Semi Application<br>Load Class F*<br>(pg. 39)                                                                         | * Class F grates with spans of 12" or more<br>are rated for a 120,000 lb. wheel load over<br>a 10" x 20" footprint per ASTM C-857.                                                                                 |
| Ductile Iron Slotted                                                                                                           | Part No. DG0653D                                                                                                                                                                                                   |
| Designed for frequent heavy traffic.                                                                                           | Open Area: 288 in <sup>2</sup> /Linear Foot<br>Dimensions: 23-3/4" x 23-3/4"<br>Weight: 130 lbs.<br>ASTM A536 Class 65-45-12<br>For use with 6530B/653SB Basins<br>Black Finish<br>Grate In-Flow: See chart pg. 16 |
| Application<br>Load Class B<br>(pg. 39)                                                                                        | Part No. DG0659                                                                                                                                                                                                    |
| Designed for use with the POLYCAST <sup>®</sup> Vinyl<br>Ester Catch Basins in areas requiring extreme<br>chemical resistance. | Open Area: 222 in <sup>2</sup> /Linear Foot<br>Dimensions: 23-3/4" x 23-3/4"<br>Weight: 20 lbs.<br>For use with 6530B/653SB Basins<br>Vinyl Ester<br>Grate In-Flow: See chart pg. 16                               |

E

#### **CORROSION RESISTANCE GUIDE**

For those highly corrosive drainage situations, Strongwell-Lenoir City Division (with plants in Lenoir City, TN and San Jose, CA), manufactures polymer concrete drainage components with DERAKANE®\* 470 Vinyl Ester resin. This includes all series of precast drainage systems and components.

The Vinyl Ester trench drains can be ordered with a highly corrosion resistant Vinyl Ester fiberglass grating.

A corrosion resistant fiberglass locking device is also available. The Vinyl Ester trench drains can also be ordered with any of the gratings offered. POLYCAST<sup>®</sup> polymer concrete products fabricated with DERAKANE<sup>®\*</sup> 470 Vinyl Ester resin are ideally suited for drainage and handling of most highly corrosive fluids.

The POLYCAST<sup>®</sup> Vinyl Ester based drains are especially suitable for drainage in areas where manufacturers must concentrate and contain corrosive materials to meet EPA pollution control requirements.

POLYCAST<sup>®</sup> drain components are manufactured with only quality polyester and Vinyl Ester resins.

#### DERAKANE® 470 Vinyl Ester Resin:

- Performs very well at high temperatures
- Can be used in many applications involving combinations of acids, halogenated organics, caustics and solvents
- · Displays high resistance to chlorinated solvents
- · Has proven track record for many industrial applications
- \* DERAKANE® is a registered trademark of Dow Chemical Co.

| CHEMICAL                    | %<br>CONCENTRATION | MAX<br>TEMP °F | CHEMICAL                 | %<br>CONCENTRATION | MAX<br>TEMP °F |
|-----------------------------|--------------------|----------------|--------------------------|--------------------|----------------|
| Α                           |                    |                | В                        |                    |                |
| Acetaldehyde                | 100                | N.R.           | Barium Carbonate         | All                | 180            |
| Acetic Acid                 | 10                 | 180            | Barium Chloride          | All                | 180            |
| Acetic Acid, Glacial        | 100                | N.R.           | Barium Cyanide           | All                | 135            |
| Acetic Anhydride            | 100                | N.R.           | Barium Hydroxide         | All                | 125            |
| Acetone                     | 10                 | 150            | Beer                     |                    | 100            |
| Acetone                     | 100                | N.R.           | Benzene                  | 100                | N.R.           |
| Acrylamide                  | 50                 | 65             | Benzoic Acid             | Sat'd.             | 180            |
| Adipic Acid                 | 23                 | 150            | Benzyl Alcohol           | All                | N.R.           |
| Alum                        | All                | 180            | Benzyl Chloride          | 100                | N.R.           |
| Aluminum Chloride           | All                | 180            | Black Liquor (Pulp Mill) | All                | 150            |
| Aluminum Chlorohydrate      | All                | 180            | Bleaches:                |                    |                |
| Aluminum Nitrate            | 100                | 150            | Calcium Hypochlorite     | All                | 150            |
| Aluminum Potassium Sulfate  | All                | 180            | Chlorine Dioxide, Wet    | Sat'd.             | 170            |
| Aluminum Sulfate            | All                | 180            | Sodium Hypochlorite      | 18                 | 153            |
| Ammonium Acetate            | 65                 | 65             | Borax                    | 100                | 180            |
| Ammonium Bicarbonate        | 50                 | 135            | Boric Acid               | All                | 180            |
| Ammonium Bifluoride         | 100                | 125            | Brine                    | All                | 180            |
| Ammonium Bromide            | 43                 | 135            | Bromine, Liquid          | 100                | N.R.           |
| Ammonium Carbonate          | All                | 125            | Bunker C Fuel Oil        | 100                | 180            |
| Ammonium Chloride           | All                | 180            | Butyl Acetate            | 100                | 100            |
| Ammonium Fluoride           | All                | 125            | Butyl Alcohol            | All                | 100            |
| Ammonium Hydroxide          | 20                 | 125            | Butyric Acid             | 100                | 65             |
| Ammonium Nitrate            | All                | 180            | C                        |                    |                |
| Ammonium Persulfate         | All                | 150            | Calcium Bisulfite        | All                | 150            |
| Ammonium Phosphate, dibasic | All                | 180            | Calcium Bromide          | All                | 180            |
| Ammonium Sulfate            | All                | 180            | Calcium Carbonate        | All                | 150            |
| Ammonium Thiocyanate        | 20                 | 180            | Calcium Chlorate         | All                | 180            |
| Aniline                     | 100                | N.R.           | Calcium Chloride         | All                | 180            |

## **CORROSION RESISTANCE GUIDE**

## POLYCAST<sup>®</sup>

| CHEMICAL                        |            | MAX  |
|---------------------------------|------------|------|
| Caloium Hydrovida               | 100        | 100  |
| Calcium Hypochlorite            |            | 150  |
| Calcium Nitrate                 |            | 180  |
| Calcium Sulfate                 | ΔΙΙ        | 180  |
| Calcium Sulfite                 |            | 180  |
| Capric Acid                     |            | 65   |
| Carbon Disulfide                | 100        | N R  |
| Carbon Tetrachloride            | 100        | 125  |
|                                 | 100        | 120  |
| Carboyylatbyl Callulosa         | 100        | 150  |
| Castor Oil                      | 100        | 100  |
| Chlorine Water                  | b'te2      | 200  |
| Chlorine Water                  | 100        | 180  |
| Chloroacetic Acid               | 25         | 100  |
| Chlorobanzana                   | 100        | NR   |
| Chloroform                      | 100        | N.R. |
| Chloropyridine (tetra)          | 100        | 100  |
|                                 | 100        | 100  |
| Trichloroethane inhibited       | 100        | 85   |
| Chromic Acid                    | 100        | 120  |
| Citric Acid                     | 120<br>All | 180  |
| Coconut Oil                     |            | 150  |
| Copper Chloride                 |            | 190  |
| Copper Vitrate                  |            | 180  |
| Copper Nillale                  |            | 100  |
| Corp Oil                        | All        | 150  |
| Corn Starch                     | Shurry     | 190  |
| Crude Oil                       | 100        | 180  |
| Cyclobeyane                     | 100        | 100  |
| <b>D</b>                        | 100        | 100  |
| Di-ammonium Phosphate           | 65         | 180  |
| Dibutyl Sebacate                | All        | 100  |
| Dichloropropane                 | 100        | NR   |
| Diesel Fuel                     | 100        | 150  |
| Diethanolamine                  | 100        | 100  |
| Dimethyl Formamide              | 100        | NR   |
| Dimethyl Phthalate              | 100        | 125  |
| Dioctyl Phthalate               | 100        | 125  |
| Diphenyl Oxide                  | 100        | 65   |
| F                               | 100        | 00   |
| ESTEBON Herbicide               | 100        | 100  |
| Esters Fatty Acid               | 100        | 150  |
| Ethanol                         | 95         | 65   |
| Ethanolamine                    | 100        | NR   |
| Ethyl Acetate                   | 100        | NR   |
| Ethylene Glycol                 | All        | 180  |
| Ethylenediaminetetraacetic Acid |            | 85   |
| F                               |            | 00   |
| Ferric Chloride                 | All        | 180  |
| Ferric Sulfate                  | All        | 180  |
| Ferrous Chloride                | All        | 180  |
| Ferrous Sulfate                 | All        | 180  |
| Fluosilicic Acid                | 10         | 150  |
|                                 |            |      |

| CHEMICAL                             | %<br>CONCENTRATION | MAX<br>TEMP °F |
|--------------------------------------|--------------------|----------------|
| Formaldehvde                         | All                | 125            |
| Formic Acid                          | 10                 | 150            |
| Fuel Oil                             | 100                | 150            |
| G                                    | 100                | 100            |
| Gasabal (5% MEOH)                    | 100                | 100            |
| Casolino Aviation                    | 100                | 150            |
| Casoline, Aviduoli                   | 100                | 100            |
| Chapping Acid                        | 50                 | 100            |
| Clusses                              | 100                | 100            |
| Glucose                              | 100                | 100            |
| Glycerine                            | 100                | 180            |
| GIYCOIIC ACIO (HYdroxyacetic)        | 70                 | 85             |
| H                                    |                    |                |
| Herbicides                           | 100                | 100            |
| Hydraulic Fluid                      | 100                | 150            |
| Hydrazine                            | 100                | N.R.           |
| Hydrobromic Acid                     | 48                 | 125            |
| Hydrochloric Acid                    | 20                 | 150            |
| Hydrofluoric Acid                    | 10                 | 125            |
| Hydrogen Peroxide                    | 30                 | 125            |
| Hypophosphorous Acid                 | 50                 | 100            |
| I                                    |                    |                |
| Insecticides                         |                    | 100            |
| Isodecanol                           |                    | 100            |
| Isopropyl Alcohol                    | All                | 100            |
| Isopropyl Myristate                  | 100                | 100            |
| J                                    |                    |                |
| Jet Fuel (JP-4)                      | 100                | 150            |
| К                                    |                    |                |
| Kerosene                             | 100                | 150            |
| L                                    |                    |                |
| Lactic Acid                          | All                | 180            |
| Lauryl Alcohol                       | 100                | 125            |
| Lead Acetate                         | All                | 180            |
| Linseed Oil                          | 100                | 180            |
| Lithium Chloride                     | Sat'd              | 180            |
| Lithium Hypochlorite                 | All                | 150            |
| M                                    |                    |                |
| Magnesium Carbonate                  | All                | 150            |
| Magnesium Chloride                   | All                | 180            |
| Magnesium Fluosilicate               | All                | 150            |
| Magnesium Hydroxide                  | 100                | 180            |
| Magnesium Sulfate                    | All                | 180            |
| Maleic Acid                          | 100                | 180            |
| Manganese Chloride                   | All                | 180            |
| Mercurous Chloride                   | All                | 180            |
| Methanol                             | 5                  | 100            |
| Methyl Ethyl Ketone                  | 100                | NR             |
| Milk                                 | 100                | 180            |
| Mineral Oils                         | 100                | 180            |
| Molasses                             | 100                | 100            |
| Molyhdenum Disulfide (Manufacturing) | 100                | 170            |
| Morpholine                           | 100                | NR             |
| Motor Oil                            | 100                | 180            |
|                                      |                    | 100            |

#### **CORROSION RESISTANCE GUIDE**

| CHEMICAL                      | %<br>CONCENTRATION | MAX<br>TEMP ⁰F | CHEMICAL                                | %<br>CONCENTRATION | MAX<br>TEMP °F |
|-------------------------------|--------------------|----------------|-----------------------------------------|--------------------|----------------|
| Myristic Acid                 | 100                | 180            | Sodium Bisulfate                        | All                | 180            |
| Ň                             |                    |                | Sodium Borate                           | Sat'd              | 180            |
| Nickel Chloride               | All                | 180            | Sodium Bromide                          | All                | 180            |
| Nickel Sulfate                | All                | 180            | Sodium Carbonate                        | 35                 | 155            |
| Nitric Acid                   | 20                 | 100            | Sodium Chlorate                         | 50                 | 180            |
| Nitrobenzene                  | 100                | N.R.           | Sodium Chloride, pH 5-10, Cl.           | Sat'd              | 155            |
| 0                             |                    |                | Sodium Ferricyanide                     | All                | 180            |
| Octanoic Acid (Caprylic Acid) | 100                | 150            | Sodium Fluoride                         | All                | 155            |
| Oleic Acid                    | All                | 180            | Sodium Hydroxide                        | 10                 | 155            |
| Olive Oils                    | 100                | 180            | Sodium Hydroxide                        | 50                 | 180            |
| Oxalic Acid                   | Sat'd.             | 100            | Sodium Hypochlorite                     | 18                 | 180            |
| Р                             |                    |                | Sodium Lauryl Sulfate                   | All                | 135            |
| Palmitic Acid                 | 100                | 180            | Sodium Phosphate                        | 10                 | 180            |
| Paper Mill Effluent           |                    | 150            | Sodium Sulfate                          | All                | 180            |
| Peanut Oil                    | 100                | 150            | Sodium Sulfide                          | All                | 180            |
| Perchlorethylene              | 100                | 65             | Sodium Sulfite                          | All                | 180            |
| Perchloric Acid               | 10                 | 125            | Sodium Thiosulfate                      | All                | 155            |
| Perchloric Acid               | 30                 | 85             | Sorbital Solutions                      | All                | 135            |
| Phosphoric Acid               | 100                | 180            | Stearic Acid                            | All                | 180            |
| Phosphorous Trichloride       |                    | N.R.           | Styrene                                 | 100                | N.R.           |
| Pine Oil                      | 100                | N.R.           | Styrene-Butadiene Latex                 |                    | 110            |
| Polyethyleneimine             | 12                 | 125            | Surfuric Acid                           | 70                 | 155            |
| Polyvinyl Alcohol             | All                | 85             | Surfuric Acid                           | 75                 | 85             |
| Potassium Bicarbonate         | 50                 | 150            | Т                                       |                    |                |
| Potassium Carbonate           | 50                 | 150            | Tartaric Acid                           | All                | 180            |
| Potassium Chloride            | All                | 180            | Tetrachloroethylene (Perchloroethylene) | 100                | 65             |
| Potassium Dichromate          | All                | 180            | Thioglycolic Acid                       |                    |                |
| Potassium Hydroxide           | 10                 | 125            | (Mercaptoacetic Acid)                   | All                | N.R.           |
| Potassium Iodide              | All                | 100            | Thionyl Chloride                        |                    | N.R.           |
| Potassium Nitrate             | All                | 180            | Toluene                                 | 100                | 65             |
| Potassium Permanganate        | All                | 180            | Trichloracetic Acid                     | 50                 | 180            |
| Potassium Persulfate          | All                | 180            | Trisodium Phosphate                     | All                | 180            |
| Potassium Sulfate             | All                | 180            | Turpentine                              | 100                | 125            |
| Propionic Acid                | 50                 | 155            | U                                       |                    |                |
| Pyridine                      | 100                | N.R.           | Urea                                    | 50                 | 125            |
| Q                             |                    |                | V                                       |                    |                |
| R                             |                    |                | Vinegar                                 | 100                | 180            |
| S                             |                    |                | W                                       |                    |                |
| Salicylic Acid                | 100                | 115            | X                                       |                    |                |
| Skydrol                       | 100                | 100            | Xylene                                  | 100                | 65             |
| Sodium Acetate                | All                | 180            | Y                                       |                    |                |
| Sodium Aluminate              | All                | 100            | Z                                       |                    |                |
| Sodium Benzoate               | 100                | 155            | Zinc Chloride                           | 70                 | 180            |
| Sodium Bicarbonate            | Sat'd              | 155            | Zinc Sulfate                            | All                | 180            |

Strongwell polymer concrete products are manufactured using polyester resin for normal environments and *Vinyl Ester* resins when higher temperature capabilities or increased corrosion resistance is required. Additional benefits include high strength-to-weight ratio, excellent impact resistance, low water absorption and nonconductivity.

This bulletin lists various chemical reagents and provides recommended corrosion resistance data for each. The recommendations are based upon tests performed by Strongwell's Vinyl Ester resin suppliers using coupons of the binding polymer under laboratory conditions. These laboratory tests may not be representative of the conditions in your application. This bulletin is intended to be used as a guide only and specifically for *Vinyl Ester* resin products manufactured by Strongwell. At the time of publication, the information and recommendations contained herein were considered accurate and reliable.

Strongwell recommends that a coupon of polymer concrete be exposed to the environment for a minimum period of 60 days to verify suitability. Strongwell will provide these coupons upon request and can analyze the effects of the exposure if the coupons are returned to our laboratory.

### 600 SERIES SPECIFICATION

### SECTION [02635] [03155] [15165] TRENCH DRAIN AND GRATE

Specifier: Use Division 2 when the trench drain is outside of the structure (building) and Division 15 when inside the structure. Use Division 3 only when the project scope is small and bundling all concrete embedment items (i.e. trench drain) in 03150 "Concrete Accessories" is more efficient than separate sections.

### **Specification Number 050702**

#### **1.0 General Requirements**

- **1.1** This specification outlines the requirements for a precast, presloped polymer concrete drain system. No substitute product shall be accepted unless previously approved.
- **1.2** This document describes the design of the channels, the associated hardware, the materials to be used, the technical characteristics of the channels and the requirements for packaging and shipping.
- **1.3** This document does not cover the manufacture of the product in detail and is intended only to define specific requirements. In all respects not covered by this document, the product shall be in accordance with the standard practice of the supplier.
- **1.4** The method of manufacturing, handling and shipping and the quality of materials used shall be such as to ensure for the finished product the properties specified in this specification.
- **1.5** Where dimensions are given in this document without specific tolerances, or where no dimensions are given, the tolerances and the dimensions permitted by good shop practices shall be considered acceptable.
- **1.6** No merchandise shall be furnished for field use until written approval is received or unless the supplier is specifically authorized to the contrary. This approval shall not be construed as waiving the requirements of this document.
- **1.7** The design architect and/or engineer must be notified in advance, and a written approval obtained, for any changes in material or design of the product.
- **1.8** The design architect and/or engineer reserves the right to remove this item from the Approved Products List if the item falls below standards, as presented.
- 1.9 All components of the system shall be from one manufacturer and shall be Strongwell POLYCAST® or an approved substitute.

#### **2.0 Specific Requirements**

- 2.1 The precast, presloped polymer concrete channels are designed to remove rain, melting snow and ice and the specific chemicals outlined in this document.
- **2.2** The precast, presloped polymer concrete drain system is designed to be installed flush to grade.
- 2.3 The precast, presloped polymer concrete drain system is designed for installation in paved traffic ways. The components supplied shall be \_\_\_\_\_\_ channels, \_\_\_\_\_\_ frames, and \_\_\_\_\_\_ grates. (See POLYCAST® catalog to match components with load application and environmental conditions.)
- 2.4 The precast, presloped polymer concrete drain components must have a minimum average slope of 0.65%. Non-sloping drain components may be used in accordance with the project documents.

#### **3.0 Design and Dimensions**

- **3.1** Each channel shall be four (4) feet in length or two (2) feet in length for half channels.
- **3.2** Provide two (2) lockdown mechanisms per four (4) foot section and one (1) per two (2) foot section. Lockdown bolts shall be provided with each channel and grate assembly. The lockdown bolts shall be 3/8" 16 UNC stainless steel. A round washer shall be placed between the bolt head and the grate. The lockdown mechanism shall be designed for an installation torque of ten (10) ft./lbs.
- **3.3** Male and female end caps shall be provided where required. Each type of end cap shall be available with a removable diaphragm for flow through applications. (See Figures 1-2)
- **3.4** Transition pieces for female to female connections and male to male connections shall be available and provided where specified. (See Figures 4 & 5)

### SECTION [02635] [03155] [15165] TRENCH DRAIN AND GRATE

- **3.5** Each precast, presloped polymer concrete channel shall be designed with a means of mechanical engagement into the adjacent concrete. This locking key shall be along the bottom on both sides. This key must be centered and run along at least 60% of the length of each channel. The transition from the locking key to the channel shall be developed in a manner which minimizes any stress concentrations on the channel or the adjacent concrete.
- **3.6** Alignment chairs shall be available which support the channel at the joint and aid in holding two corresponding channels together. These chairs shall not require special tools or techniques to install and adjust.
- 3.7 Catch basins shall also be available which have nominal outlet drain pipe provisions of 4", 6" and 8" or 10" and 12".

#### 4.0 Materials Technical Requirements

- **4.1** Materials used in the manufacture of the precast, presloped polymer concrete drain system shall have the properties specified in this section.
- **4.2** Compressive strength shall be 12,000 psi and flexural strength shall be 3,000 psi when tested in accordance with ASTM C579 and C78 respectively.
- **4.3** Three specimens shall be tested for accelerated service in accordance with ASTM D756, Procedure E, with the exception that the specimen conditioning may be deleted.
- **4.4** Three specimens shall be exposed to each of the following chemical reagents in accordance with ASTM D543, Section 7, Procedure 1, using standard laboratory atmosphere and seven days for all tests.

| Polyester Resir            | 1                    |
|----------------------------|----------------------|
| <u>Chemical</u>            | <b>Concentration</b> |
| Sodium Chloride            | 5%                   |
| Sulfuric Acid              | 0.1 N                |
| Ethylene Glycol            | 100%                 |
| Naptha                     | 100%                 |
| Sodium Sulfate             | 0.1 N                |
| Hydrochloric Acid          | 0.2 N                |
| Sodium Hydroxide           | 0.1 N                |
| Acetic Acid                | 5%                   |
| Kerosene                   | Per ASTM D543        |
| Diesel Fuel                | 100%                 |
| Fuel Oil                   | 100%                 |
| Motor Oil                  | 100%                 |
| Glycol                     | 100%                 |
| Hydraulic Fluid (Standard) | 100%                 |
| Jet Fuel JP-4              | 100%                 |
| Skydrol                    | 100%                 |

- **4.5** After testing for accelerated service and chemical resistance, the material shall retain at least 75% of the strength of the control specimens and there shall be no more than 2% change in weight or any dimension.
- **4.6** Three specimens shall be tested for water absorption in accordance with ASTM D570, Sections 5 and 6.1. The specimens shall weigh approximately 9 ounces and have a thickness of 1/2". There shall be no more than a 2% change in weight or any dimension.
- **4.7** The test specimens, with the exception of the flammability test specimens, shall show no visual cracking, crazing, checking, blistering or surface pitting. Changes in color will be permitted only if the change does not indicate degradation of the material and, in the opinion of the user, the change will not be detrimental to the overall appearance of the product.

### SECTION [02635] [03155] [15165] TRENCH DRAIN AND GRATE



**Figure 1.** DA0670 Female End Cap



Figure 2. DA0670M Male End Cap



Figure 3. DP0625D6 - 6" Outlet End Cap



**Figure 4.** DP0699M Male Joint Channel Adapter



**Figure 5.** DP0699F Female Joint Channel Adapter

### **5.0 Packaging and Shipping**

5.1 The precast, presloped polymer concrete drain system shall be shipped with all of the necessary hardware securely fastened to the channels or the shipping pallet.

#### **6.0 Supplementary Specifications**

The most recent issue of the following unattached documents shall be supplementary to this specification:

Federal Aviation Administration (FAA) Advisory Circular Airport Pavement Design and Evaluation (AC 150/5320-6D Appendix 3 Design of Structures for Heavy Aircraft)

ASTM Standard D229, Method of Testing Rigid Sheet and Plate Materials Used for Electrical Insulation

ASTM Standard D543, Test Method for Resistance of Plastics to Chemical Reagents

ASTM Standard D570, Test Method for Water Absorption of Plastics

ASTM Standard D576, Practice for Determination of Weight and Shape Changes of Plastics Under Accelerated Service Conditions

ASTM Standard G53, Recommended Practice for Operating Light and Water Exposure Apparatus for Exposure of Non-Metallic Materials

ASTM Standard C78, Test Method for Flexural Strength of Concrete

ASTM Standard C579, Test Method for Compressive Strength of Chemical Resistant Mortars and Monolithic Surfacings

AASHTO Highway Drainage Guidelines

AASHTO Standard Specification for Highway Bridges

### SECTION [02635] [03155] [15165] TRENCH DRAIN AND GRATE

Specifier: Use Division 2 when the trench drain is exterior of the structure (building) and Div. 15 when inside the structure. Use Div. 3 only when the project scope is small, and bundling all concrete embedment items (i.e. trench drain) in 03150 "Concrete Accessories" is more efficient than separate sections.

### **Specification Number 050802**

#### **1.0 General Requirements**

- **1.1** This specification outlines the requirements for a preformed, presloped surface drain system. No substitute product shall be accepted unless previously approved.
- **1.2** This document describes the design of the channels, the associated hardware, the materials to be used, the technical characteristics of the channels and the requirements for packaging and shipping.
- **1.3** This document does not cover the manufacture of the product in detail and is intended only to define specific requirements. In all respects not covered by this document, the product shall be in accordance with the standard practice of the supplier.
- **1.4** The method of manufacturing, handling and shipping and the quality of materials used shall be such as to ensure for the finished product the properties specified in this specification.
- **1.5** Where dimensions are given in this document without specific tolerances, or where no dimensions are given, the tolerances and the dimensions permitted by good shop practices shall be considered acceptable.
- **1.6** No merchandise shall be furnished for field use until written approval is received or unless the supplier is specifically authorized to the contrary. This approval shall not be construed as waiving the requirements of this document.
- **1.7** The design architect and/or engineer must be notified in advance and a written approval obtained for any changes in material or design of the product.
- **1.8** The design architect and/or engineer reserves the right to remove this item from the Approved Products List if the item falls below standards, as presented.
- 1.9 All components of the system shall be from one manufacturer and shall be Strongwell POLYCAST® or an approved substitute.

#### **2.0 Specific Requirements**

- 2.1 The preformed, presloped channels are designed to remove rain, melting snow and ice and the specific chemicals outlined in this document.
- 2.2 The preformed, presloped drain system has been designed to be installed flush to grade.
- 2.3 The preformed, presloped drain system shall be designed for installation in paved traffic ways.
- 2.4 The preformed, presloped drain components must have a minimum average slope of 1%. The minimum length of continuously sloped channels shall be 120 feet. Non-sloping drain components may be used in accordance with the project documents.
- **2.5** At full channel conditions, the system flow rate shall not be less than 6.73 cfs and the flow velocity not less than 5.8 fps for continuously sloped runs.
- **2.6** Glass fiber reinforced polymer components shall have a minimum of 65% glass reinforcement and UV surfacing veil on inner and outer surfaces.

#### **3.0 Design and Dimensions**

- 3.1 Each channel shall be eight (8) feet in length.
- 3.2 Provide four (4) lockdown mechanisms per eight (8) foot section. Lockdown bolts shall be provided with each channel and grate assembly. The lockdown bolts shall be 3/8" 16 UNC stainless steel. A round washer shall be placed under the bolt head. The lockdown mechanism shall be designed for an installation torque of ten (10) ft./lbs.
- **3.3** End caps shall be provided where required. Each end cap shall be available in closed style with a scored line to allow adaptation to an 8" pipe opening. (See Figure 1)
- **3.4** Transition pieces for inlet to inlet connections shall be available and provided where specified.

### **3000 SERIES SPECIFICATION**

- 3.5 The shape of the channel shall lock into the concrete for the entire length of the channel. Channels deeper than 20" shall have an integral longitudinal stiffening rib reinforcement that locks into the concrete. Channel sidewall deflection shall not impede fluid flow or exceed 0.20" during concrete placement. The bottom shall be 8-5/8" inside to match 8" pipe diameter and be fully rounded. Radiused longitudinal transitions between vertical wall sections having a nominal inside width of 5-5/8" and the channel bottom are acceptable.
- **3.6** Integral chairs shall be incorporated into the frame to support the channel and aid in holding two corresponding channels aligned. These chairs shall not require special tools or techniques to adjust. The design of the chair shall be such that it can be used to support the channels from the bottom of the trench or hang the channels from the top of the trench.
- **3.7** The frame shall provide a concrete interlock. It shall also capture and support the channel sidewall. Frames shall not restrict the longitudinal movement of the drain body due to thermal expansion.
- **3.8** No composite material shall be between the frame grate bearing member and the encasing concrete.
- **3.9** The coefficient of thermal expansion for the channel bodies shall not exceed 4.5 x 10<sup>6</sup> in/in/F.
- **3.10** The frame shall incorporate an integral air vent of a design and frequency to release air from under the bearing structure.
- **3.11** The frame material shall be \_\_\_\_\_\_ (galvanized steel) (stainless steel) as required.
- **3.12** The grate material shall be \_\_\_\_\_\_ (fiberglass) (stainless steel) (ductile iron) as required.

**Figure 1.** DA3000A End Cap/Adapter

#### **4.0 Materials Technical Requirements**

- **4.1** Materials used in the manufacture of the preformed, presloped drain system shall have the properties specified in this section.
- **4.2** Compressive strength shall be 10,000 psi and flexural strength shall be 8,000 psi when tested in accordance with ASTM D695 and D790 respectively.
- **4.3** Three specimens shall be tested for accelerated service in accordance with ASTM D756, Procedure E, with the exception that the specimen conditioning may be deleted.
- **4.4** Three specimens shall be exposed to each of the following chemical reagents in accordance with ASTM D543, Section 7, Procedure 1, using standard laboratory atmosphere and seven days for all tests.
- **4.5** After testing for accelerated service and chemical resistance, the material shall retain at least 75% of the strength of the control specimens and there shall be no more than 2% change in weight or any dimension.

| Polyester Resin            |                      |
|----------------------------|----------------------|
| <u>Chemical</u>            | <b>Concentration</b> |
| Sodium Chloride            | 5%                   |
| Sulfuric Acid              | 0.1 N                |
| Ethylene Glycol            | 100%                 |
| Naptha                     | 100%                 |
| Sodium Sulfate             | 0.1 N                |
| Hydrochloric Acid          | 0.2 N                |
| Sodium Hydroxide           | 0.1 N                |
| Acetic Acid                | 5%                   |
| Kerosene                   | Per ASTM D543        |
| Diesel Fuel                | 100%                 |
| Fuel Oil                   | 100%                 |
| Motor Oil                  | 100%                 |
| Glycol                     | 100%                 |
| Hydraulic Fluid (Standard) | 100%                 |
| Jet Fuel                   | 100%                 |
| Skydrol                    | 100%                 |





#### **POLYCAST**<sup>®</sup>

#### **3000 SERIES SPECIFICATION**

#### **POLYCAST**<sup>®</sup>

### SECTION [02635] [03155] [15165] TRENCH DRAIN AND GRATE

- **4.6** Three specimens shall be tested for water absorption in accordance with ASTM D570. There shall be no more than a 2% change in weight or any dimension.
- **4.7** The test specimens, with the exception of the flammability test specimens, shall show no visual cracking, crazing, checking, blistering or surface pitting. Changes in color will be permitted only if the change does not indicate degradation of the material and, in the opinion of the user, the change will not be detrimental to the overall appearance of the product.
- 4.8 All metallic components of the frame and lockdown mechanism shall be subjected to the salt spray test in accordance with ASTM B-117 for 1000 hours. After salt removal there shall be no more than a 2% reduction in weight. All parts must remain functional with no detrimental effect on welds.

#### **5.0 Packaging and Shipping**

- **5.1** The preformed, presloped drain system shall be shipped with all of the necessary hardware securely fastened to the channels or the shipping pallet.
- **5.2** All packaging, dunnage and construction debris must be removed by the installer prior to completion.

#### **6.0 Supplementary Specifications**

The most recent issue of the following unattached specifications shall be supplementary to this specification:

Federal Aviation Administration (FAA) Advisory Circular Airport Pavement Design and Evaluation (AC 150/5320-6D Appendix 3 Design of Structures for Heavy Aircraft)

ASTM Standard D229, Method of Testing Rigid Sheet and Plate Material Used for Electrical Insulation

ASTM Standard D543, Test Method for Resistance of Plastics to Chemical Reagents

ASTM Standard D570, Test Method for Water Absorption of Plastics

ASTM Standard D576, Practice for Determination of Weight and Shape Changes of Plastics Under Accelerated Service Conditions

ASTM Standard G53, Recommended Practice for Operating Light and Water Exposure Apparatus for Exposure of Non-Metallic Materials

ASTM Standard D695, Test Method for Compressive Properties of Rigid Plastics

ASTM Standard D790, Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials

AASHTO Highway Drainage Guidelines

AASHTO Standard Specification for Highway Bridges

### LOAD CLASSIFICATIONS



### **Application Load Class A**

Pedestrian, bicycles, golf carts. Designed for a distributed load of 23 psi (3300 pounds per square foot). ADA compliant for accessible routes. Meets ASTM C-857.



#### **Application Load Class B**

Automobiles, light pickup trucks, general aviation aircraft, low speeds (parking areas, driveways). Designed for a distributed load of 62 psi (9,000 pounds per square foot).



#### **Application Load Class C**

Pneumatic tire vehicles and highway vehicles, low to moderate speeds, (parking areas, driveways). Designed for a distributed pressure of 260 psi (37,440 pounds per square foot).



#### **Application Load Class D**

Highway vehicles, commercial aircraft (exceeds FAA Airport Pavement Design Loads per AC 150/5320-6D), low to moderate speeds, (parking areas, driveways, warehouses). Designed for 450 psi (64,800 pounds per square foot) distributed



#### Application Load Class E

Hard wheel forklifts, construction equipment, off-road vehicles, transport and fighter category commercial and military cargo aircraft. Designed for a distributed load of 550 psi (79,200 pounds per square foot). Exceeds AASHTO H-20, FAA requirements for pavement design per AC 150/5320-6D. Moderate speeds (loading docks, terminal areas).



#### **Application Load Class F**

Interstate highway traffic rated. Designed for a distributed load of 900 psi (130,000 pounds per square foot). Exceeds AASHTO H-20, FAA requirements for pavement design per AC 150/5320-6D. High speed vehicles (roadway and runway applications).

# STOCKING DISTRIBUTORS THROUGHOUT NORTH AMERICA



IV12M1105 ©Strongwell